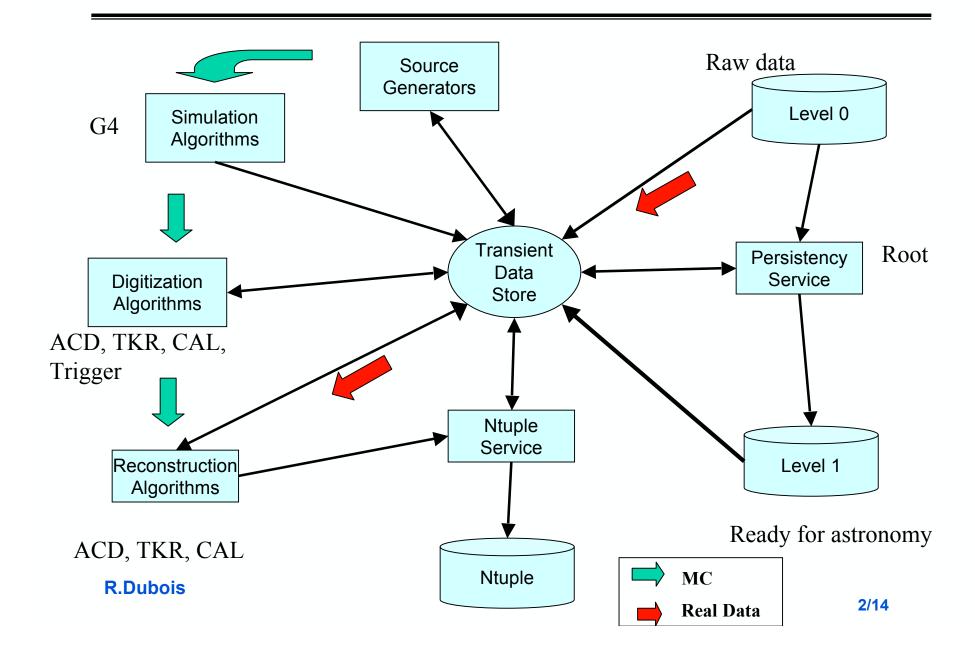


Running the Software

What

Where


When

How

http://www-glast.slac.stanford.edu/software

Data flow in Gleam

Sim/Recon Developers Toolset

Root, IDL – analysis

Reconstruction
TkrRecon, CalRecon, AcdRecon

simulation package GEANT4

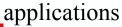
xml – geometry, parameters

Root – object I/O

Gaudi – code framework

VC++ - Windows IDE gnu tools - Linux

vcmt – Windows, linux gui

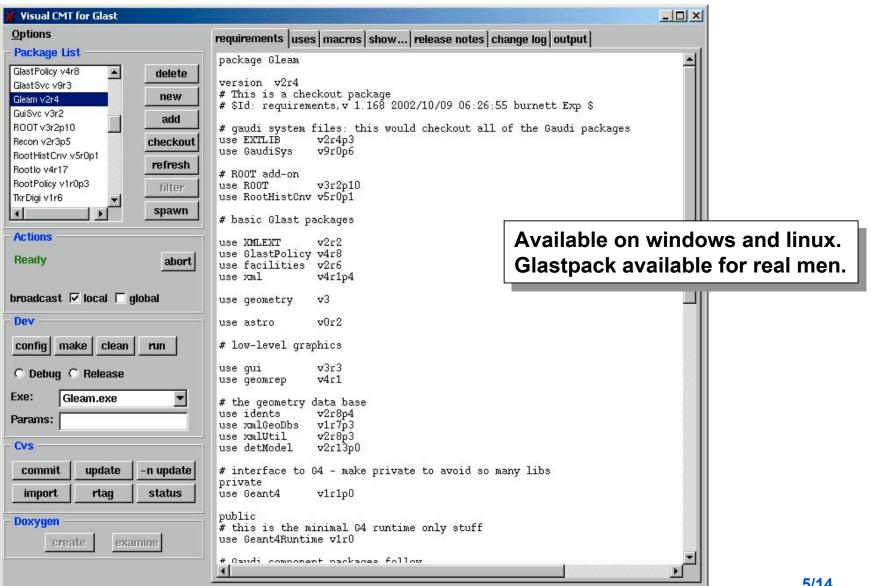

CMT – package version management

ssh – secure cvs access

cvs – file version management

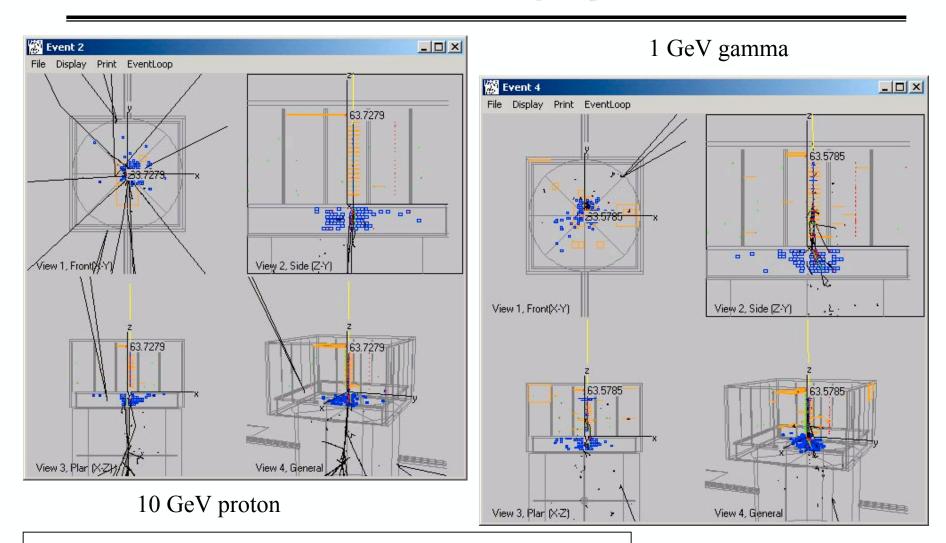
Sim/Recon Users Toolset

Root, IDL – analysis

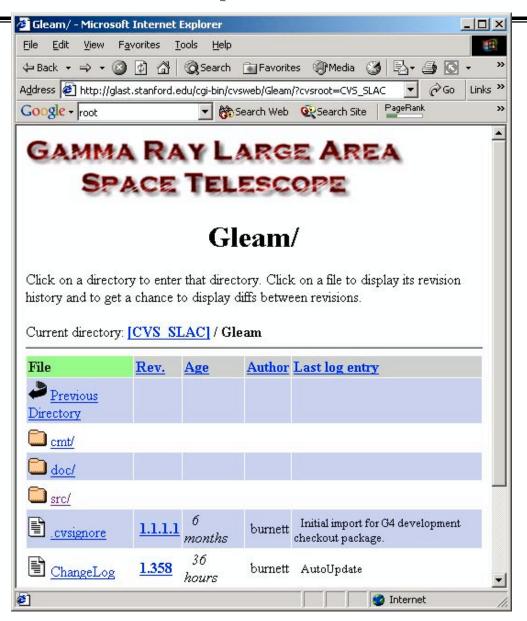

Gleam "binary" distribution – Windows, Linux

CMT – package version management

vcmt – Windows, linux gui



vcmt – gui for package manipulation


Event Displays

FRED & WIRED coming soon as more interactive displays.

cvs web – peruse the code

Where to Get and Run the Code

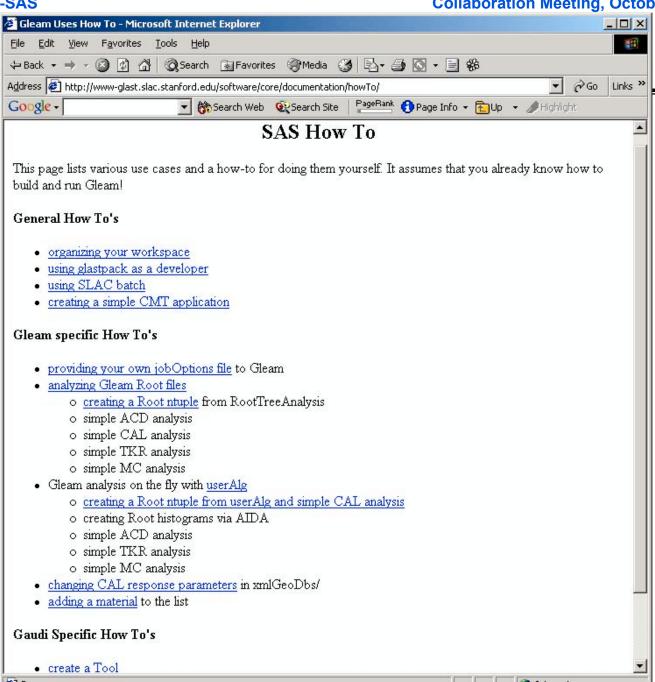
- Developer
 - From cvs at SLAC
 - cvsroot = centaurusa.slac.stanford.edu

- User
 - Get binary distributions from our ftp site
 - Will be ready with Gleam
 v3

- Run the code
 - Your own box
 - You are the sysadmin
 - Prebuilt
 - SLAC linux farm
 - UW Windows terminal server
 - · Releases already built

When? End of October for Gleam v3!

How to Run the Code


- Gleam is configurable from a "jobOptions" file:
 - Algorithms are loaded dynamically upon request
 - Can specify the exact sequence of algorithms to run, eg
 - Source + G4 + Digi + Recon creating output Root files
 - Recon from input Digi file, creating output Root file
 - Digi from input MC file, no output
 - Analyze results from output files (RootTreeAnalysis) or add your own analysis algorithm (userAlg) to Gleam
 - Analyze full TDS or Root trees or use the analysis ntuple and create/add your own ntuple columns
- See the Gleam Users Guide (aka RTFM)

http://www-glast.slac.stanford.edu/software/gleam/userGuide/

- Descriptions of obtaining and running the code
- A growing Cookbook of How-To examples
- mailto:helpsoftlist@glast.stanford.edu
- Approaching critical mass for community of users who can answer queries

R.Dubois

AcdDigiAlg.xmlFile	The full path and filename of an input XML file containing constants for the ACD digitization.
AcdDigiAlg.autoCalibrate	Boolean Flag that denotes whether or not to apply auto calibration 1 (One) denotes true, so that auto calibration will be applied 0 (zero) is false
AcdDigiAlg.applyPoisson	Boolean Flag denoting whether or not to apply Poisson fluctuations to the number of photo electrons detected by a PMT. 1 (One) denotes true, so that Poisson fluctuations are applied.
AcdDigiAlg.applyGaussianNoisse	Boolean Flag denoting whether or not to apply gaussian noise to the electronics. Noise is applied to the PHA, veto and CNO disrciminators separately. 1 (One) denotes true, meaning that the noise is applied.
AcdDigiAlg.edgeEffect	Boolean Flag denoting whether or not to apply edge effects, where the position of a hit is used to determine how much energy was actually detected. 1 (One) denotes true, so that edge effects are taken into account.
AcdDigiMcIntHitAlg.xmlFile	The full path and filename of an input XML file containing constants for the ACD digitization.

R.Dubois

What's Coming in Gleam

- Continual improvement of subsystem digis and recons
 - ACD
 - Ribbons, efficiency maps
 - Calibrations
 - CAL
 - Revised leakage corrections
 - Non-linear tapers
 - Failure modes
 - Calibratrions
 - TKR
 - Further development in all areas digi, patrec, fitting
 - Alignment algorithms
- Need to add Event Interpretation step
 - Make use of all the subsystem info
- Fancier event display
 - Separated off from Gleam proper
 - Expected in November (after Riccardo's teaching is done)
- Python interface available from Gaudi-central starting to play with it
- Have NOT yet had the manpower to create a gui for Root analysis

Development Process

- Have been on 6-month cycle for major releases
 - Seems about right so far
 - Backward-incompatible upgrades are done!
- BBS (Beg Borrow & Steal) approach
 - Upside is all the features we gain for 'free', supplied and supported by others
 - Downside is keeping up with new versions
 - Major suspects for upgrade usually are
 - G4, Root, Gaudi
 - CMT
 - Compilers interested in gcc 3.xx, and Studio 7 now
 - » These are essentially ANSI standard now; a good idea for us to upgrade
 - We expect to embark on these upgrades forthwith

Random Quotes from Users

- Julie Mcenery new to us from Goddard:
 - "I am stunned by the relative ease with which I could get things running. I was expecting more of a struggle."
- Berrie Giebels
 - "It is easy now and there are more and more people available for help. Running it has also few surprises.. the only comments I got at the lab was that the event display was ugly. I think that it's a great tool and it only needs more "cookbooks", because some people will use it like me with a partial understanding of c++, but knowing a bit about Root AND what you want to look for is enough to actually use it."
- It works! Have fun with it!